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INTRO

Artificial Intelligence (AI) has revolutionized numerous domains, transforming the way we live and work. Its algorithms 

and models have proven their mettle by outperforming traditional methods in various applications, from natural language 

processing to self-driving cars. However, as AI permeates our lives, it introduces new security risks that can have 

catastrophic consequences. A compromised model could cause car accidents, misdiagnose illnesses, jeopardize lives, create 

fake content in news or manipulate stocks, impacting serious financial crises. 

To harness AI’s potential, while safeguarding against vulnerabilities, regular audits, adversarial testing, and transparent 

model development are essential. A practical framework for securing AI systems is crucial, ensuring that the future lies at 

the intersection of innovation and resilience. Join us as we explore the delicate balance between progress and security in 

the era of technological marvels.

How to read this document

•	 Each of the threats below has an associated category or asset, risk area, and triggers — criteria that make a given  
threat apply. 

•	 You can find a summary of each threat, together with impact and examples, as well as proposed mitigations and references.

TRAINING DATA LEAKAGE 
 

Name Category/Asset Main Risk Trigger

Training data leakage Model/Dataset Confidentiality, 
Compliance, Legal

Generative models trained 
on shared sensitive data

Summary 
In AI, training data leakage refers to the inadvertent exposure of sensitive information that may be contained within the 
dataset(s) used to train a model. This leakage can occur through various means, such as improper data handling practices, 
inadequate data anonymization techniques, or vulnerabilities in data storage and transmission systems. Training data leakage 
may pose significant risks to privacy, security, and intellectual property, highlighting the importance of robust data protection 
measures throughout an AI system’s lifecycle.

Impact 
The impact of training data leakage has the potential to lead to breaches of confidentiality, loss of competitive advantage and 
potential legal liabilities for organizations. For instance, in the context of healthcare, the exposure of patient records used to 
train medical diagnostic models could result in violations of privacy regulations such as the US Health Insurance Portability 
and Accountability Act (HIPAA) and undermine patient trust. Similarly, in the realm of financial services, the leakage of 
proprietary trading data used to train predictive models could enable competitors to gain insights into trading strategies, 
compromising market integrity and business competitiveness.

Example attack

•	 Attacker, via carefully crafted prompt, is able to extract information included in training data about certain individuals that 
may be sensitive.

•	 Attacker, through various techniques like vulnerabilities, improper access control, social engineering, or malicious code, is 
able to compromise systems that store or access datasets and gets access to training data itself, giving the attacker a wide 

knowledge about training sources and potentially sensitive information stored in the training dataset.
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Mitigations

•	 Data Anonymization: Apply robust data anonymization techniques such as differential privacy, k-anonymity, or l-diversity 
to protect sensitive information in the training dataset while preserving its utility for model training.

•	 Train-Test Split: Apply data preparation techniques only to the training set, avoiding leakage. Evaluate the model on a 
separate test set.

•	 Access Controls: Implement strict access controls and data governance policies to restrict access to training data only to 
authorized personnel and ensure that data usage complies with applicable privacy regulations and organizational policies.

•	 Secure Data Transmission: Encrypt training data during transmission over untrusted networks using secure 
communication protocols such as transport layer security (TLS) or virtual private networks (VPNs) to prevent 
eavesdropping or interception by malicious actors.

•	 Consider using synthetic data or redacting the original datasets to remove values and properties that are sensitive, yet not 
important in the model training process.

•	 Consider proper data classification and data loss prevention (DLP) systems covering stored and processed data.

PRIVACY 
 

Name Category/Asset Main Risk Trigger

Privacy Model/Dataset Confidentiality, 
Compliance, Legal

Generative models 
trained on shared 
sensitive personal data

Decision flow based on 
returned predictions 
(business context 
identification)

Summary 
AI has become pervasive across various domains, but its reliance on large volumes of training data can give rise to privacy 
concerns, relating to the collection, storage, and utilization of sensitive data to train and deploy models. The challenge lies 
in balancing the need for accurate models with the imperative to safeguard individuals’ privacy rights. Addressing privacy 
concerns involves implementing robust data pseudonymization and anonymization techniques, implementing access controls, 
and developing privacy-preserving AI systems. Privacy risks are often layered with other AI risks, such as training data leakage, 
bias, and lack of explainability/transparency, and can occur across the AI lifecycle, from training stages to inference. 

Impact 
The impact of privacy breaches in AI can be significant. For instance, unauthorized access to sensitive healthcare data used 
to train medical diagnostic models can compromise patient confidentiality and may result in regulatory penalties. Models 
often require personal and private data for accurate predictions. However, using such data poses risks of leakage and may 
violate privacy laws and regulations like the EU’s General Data Protection Regulation (GDPR). Similarly, in the context of 
recommender systems, inadvertent disclosure of users’ preferences and behaviors can erode user trust and lead to 
adverse consequences.

Example attack 
An attacker attempts to determine whether a specific individual’s data was used in the training dataset of a  model. By 
exploiting the model’s output probabilities or confidence scores, the attacker can infer whether a given data point was part of 
the training data, thus compromising individual privacy. For instance, in a medical research study, an attacker could determine 
whether a particular patient’s data was included in the training dataset for a predictive model, revealing sensitive medical 
information without the patient’s consent.
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Mitigations

•	 Differential Privacy: Implement differential privacy mechanisms to inject noise into training data or model outputs, 
thereby preventing adversaries from inferring sensitive information about individual data points.

•	 Data Minimization: Adopt data minimization principles to collect and retain only the minimum amount of data necessary 
for model training and inference, reducing the risk of privacy breaches.

•	 Secure Multiparty Computation (SMC): Utilize SMC protocols to enable collaborative model training across multiple 
parties without revealing individual data points, preserving privacy while leveraging the collective knowledge of 
diverse datasets.

•	 Federated Learning: Employ federated learning techniques to train machine learning models directly on user devices, 
ensuring that sensitive data remains localized and reducing the need for centralized data storage.

•	 Privacy-Preserving Evaluation: Use privacy-preserving evaluation methods such as homomorphic encryption or secure 
enclaves to enable model evaluation without exposing sensitive data to unauthorized parties.

BIAS 
 

Name Category/Asset Main Risk Trigger

Bias Model/Dataset Integrity, Compliance, Legal Model response used 
for business decisions or 
presented to wider audience

Summary 
AI models, despite their impressive capabilities, are susceptible to bias which refers to the presence of systematic and unfair 
inaccuracies in predictions made by the models. These biases can arise from various sources, including biased training data, 
algorithmic design choices, and the inherent biases of the individuals involved in the development process. Recognizing 
and mitigating bias in AI models is crucial to ensure fair and equitable outcomes, especially in applications such as finance, 
healthcare, and criminal justice.

Impact 
The impact of AI model bias can potentially lead to discriminatory outcomes that disproportionately affect certain groups. In 
scenarios where biased models are deployed, individuals may experience unfair treatment, denial of opportunities, or biased 
decision-making. This not only erodes trust in AI systems, but also perpetuates and amplifies existing societal inequalities

Example attack 
An example of a bias attack is adversarial manipulation, where malicious actors deliberately inject biased data into the 
training dataset to influence the model’s predictions. This can be achieved by subtly modifying input data to shift the model’s 
decision boundaries in favor of a particular group or outcome. Adversarial attacks highlight the vulnerability of AI systems to 
intentional manipulation, emphasizing the need for robust defenses against such threats. Another example is unexpected bias 
in the model responses which has the potential to lead to legal implications and reputational risks. New York City, for example, 
introduced a new law that requires Automated Employment Decision Tools to be audited against bias before use. (ref)

Mitigations

•	 Data collection and cleansing: Ensuring diverse and representative datasets, carefully examining data sources for 
potential biases, and employing techniques like data augmentation to address imbalances.

•	 Algorithm selection and design: Utilizing algorithms known to be less susceptible to bias and carefully evaluating fairness 
metrics during model development.

•	 Human oversight and auditing: Implementing human review processes to catch and address biased decisions, regularly 
performing fairness audits to identify and mitigate potential issues.
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•	 Employing techniques like counterfactual analysis or fairness-aware optimization to adjust model outputs and reduce bias 
after the fact.

•	 Continuous monitoring and feedback: Actively monitoring deployed models for signs of bias and incorporating feedback 
from users and stakeholders to refine them over time.

•	 Evaluate model fairness using metrics like demographic parity, equalized odds, and disparate impact.

•	 Adjust sample weights to balance underrepresented groups.

•	 FairGAN: Fairness-aware Generative Adversarial Networks may be used to generate fair synthetic data.

LACK OF EXPLAINABILITY / TRANSPARENCY 
 

Name Category/Asset Main Risk Trigger

Lack of explainability / 
transparency

Model/Dataset Integrity, Compliance, Legal Decision flow based on 
returned predictions 
(business context 
identification)

Summary 
AI models often lack explainability (LOE), this problem is present in many powerful models, particularly complex deep learning 
architectures. This opacity, often referred to as the “black box” problem, presents a significant challenge across various 
domains. From understanding medical diagnoses to ensuring fairness in loan approvals, explainability is crucial for building 
trust, mitigating bias and ensuring responsible AI development. Striking the right balance can be challenging. Complex 
models may offer superior accuracy but often are “black boxes.” Simpler models often provide greater transparency but may 
underperform. 

Impact

•	 Reduced Trust: Users struggle to trust models they don’t understand, leading to hesitancy in adopting AI solutions. This 
hinders the widespread adoption of beneficial technologies, particularly in high-stakes domains like healthcare and finance.

•	 Bias Amplification: If biases exist in the training data, opaque models may amplify them, leading to discriminatory 
outcomes. Without understanding the model’s reasoning, it’s difficult to identify and address these biases.

•	 Security Vulnerabilities: The complex inner workings of black box models can be exploited by attackers to manipulate their 
outputs, potentially leading to security and data breaches.

•	 Debugging Challenges: Troubleshooting and improving opaque models is significantly more challenging compared to 

interpretable ones. This hinders the development and maintenance of robust and reliable AI systems.

Example attack 
Imagine an image classification system used for autonomous vehicles, an attacker could manipulate road signs or traffic 
signals in a way that causes the model to misinterpret them, potentially leading to hazardous driving behaviors. Because the 
model fails to provide explanations for its decisions, these adversarial attacks can go unnoticed until they result in real-world 
consequences, highlighting the importance of explainability in robust and secure AI systems.
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Mitigations

•	 Feature Importance: Techniques like LIME (Local Interpretable Model-Agnostic Explanations) and SHAP (SHapley 
Additive exPlanations) help identify the most influential features contributing to a prediction, offering insights into the 
model’s reasoning.

•	 Model Explainability: Utilize techniques like Explainable AI (XAI) to understand the model’s decision-making and identify 
potential vulnerabilities.

•	 Counterfactual Explanations: Approaches like Anchors or Integrated Gradients generate counterfactual examples, i.e., 
“what-if” scenarios where the input is minimally changed to produce a different output. These can help users understand 
the boundaries and decision logic of the model.

•	 Adversarial Training: Exposing the model to adversarial examples during training can help it develop robustness against 
such attacks. This involves generating adversarial examples and iteratively refining the model to resist them.

•	 Model Transparency and Documentation: Document and maintain detailed records of the model’s architecture, training 
data, and hyperparameters to facilitate transparency and reproducibility. Providing clear documentation enables users to 
understand and validate the model’s behavior effectively.

BACKDOORING MODELS (INSIDER ATTACKS) 
 

Name Category/Asset Main Risk Trigger

Backdooring models 
(insider attacks)

Model Integrity, Compliance, Legal Creating 1P models or fine-
tuning/processing 3P models

Summary 
Model backdooring insider threats are a significant concern in AI, where adversaries manipulate models during training to 
introduce hidden vulnerabilities, allowing them to trigger malicious behavior during deployment. This insider threat poses a 
serious risk to the integrity and security of AI systems, potentially compromising their reliability and trustworthiness.

Impact 
The impact of model backdooring or insider attacks may lead to compromised model performance, unauthorized access to 
sensitive information, and potential harm to individuals or organizations relying on the affected systems. Adversaries can 
exploit backdoors to evade detection mechanisms, manipulate model outputs, or launch targeted attacks, undermining the 
effectiveness and safety of machine learning applications across various domains.

Example attack

•	 Trojan Injection: An attacker with insider access subtly modifies the training data or model architecture to insert a Trojan 
trigger, which activates the backdoor under specific conditions. For instance, in an image classification model, the attacker 
may insert a hidden trigger that causes the model to misclassify images containing a certain pattern or object as benign, 
leading to potentially harmful consequences during deployment.

•	 Data Poisoning: Adversaries inject malicious data samples into the training dataset to bias the model towards certain 
behaviors or objectives. By strategically poisoning the training data, attackers can manipulate the model’s decision 
boundaries, leading to unexpected or undesirable outcomes during inference. For example, in a spam email detection 
system, an adversary may inject benign emails labeled as spam to deceive the model into misclassifying 

legitimate messages.
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Mitigations

•	 Secure Development Practices: Implementing strict access controls, code review processes, and continuous monitoring 
throughout the model development lifecycle.

•	 Data Provenance and Auditability: tracking data origin, modifications, and access logs to identify suspicious activity and 
potential tampering attempts.

•	 Model Verification and Validation: thorough verification and validation of AI models to detect anomalous behavior or 
deviations from expected norms. This may involve rigorous testing, model introspection, and verification of model outputs 
against ground truth labels or known benchmarks.

•	 Access Control and Monitoring: enforcing strict access controls and monitoring mechanisms to limit the exposure of 
models to potential insider threats. Monitor model activity and behavior for signs of unauthorized access, suspicious 
activity, or deviations from normal operation.

•	 Adversary Detection and Response: proactive measures for detecting and responding to insider threats in real-time. This 
includes deploying anomaly detection systems, conducting regular audits, and implementing incident response protocols to 
mitigate the impact of backdoor attacks.

PROMPT INJECTION 
 

Name Category/Asset Main Risk Trigger

Prompt injection Model Integrity, Compliance, Legal Model response used 
for business decisions or 
inference designed to be 
limited in purpose

Summary 
Prompt injection attacks target the way LLMs process input prompts. These prompts essentially guide the model’s thinking 
and influence the generated output. Attackers can manipulate prompts in several ways:

•	 Poisoning: Injecting malicious keywords or phrases into the prompt to steer the model towards generating specific outputs, 
like hate speech, misinformation, or offensive content.

•	 Adversarial Prompt Crafting: Constructing prompts that exploit the model’s internal biases or blind spots to produce 
biased or unfair outputs, even when the actual text used is neutral.

•	 Meta-prompt Injection: Embedding hidden instructions within the prompt that subtly influence the model’s behavior 

beyond the intended task, potentially leading to unintended consequences.

Impact

•	 Dissemination of Harmful Content: LLMs can be used to generate large volumes of text, making them susceptible to being 
used for spreading misinformation, propaganda, or hate speech.

•	 Erosion of Trust: If LLMs are perceived as easily manipulated, it can erode public trust in these technologies and their 
potential benefits.

•	 Privacy Violations: Malicious prompts could be used to extract sensitive information from the model, potentially violating 

user privacy or revealing confidential details about the training data.
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Example attack 
Attackers can craft adversarial inputs into a publicly accessible system tailored to exploit vulnerabilities in LLMs and induce 
specific behaviors or outcomes. For instance, in a natural language processing system, an adversary may inject carefully 
crafted inputs containing subtle linguistic cues or triggers to manipulate the model’s responses to generate outputs that 
leak information.

Mitigations

•	 Prompt Validation and Filtering: Implementing mechanisms to detect and filter out malicious or suspicious prompts before 
feeding them to the LLM.

•	 Adversarial Training: Training LLMs on diverse and adversarial prompts to make them more robust against 
manipulation attempts.

•	 Context-Aware Processing: Incorporating context information (e.g., user identity, task specifics) into the LLM’s processing 
to prevent prompts from being exploited in isolation.

•	 Explainable AI Techniques: Utilizing explainable AI methods to understand how prompts contribute to the generated 
output, enabling better detection of potential manipulation attempts.

•	 Human-in-the-Loop Systems: Combining LLMs with human oversight and review processes can help catch malicious 
outputs and ensure responsible use of these models.

INDIRECT PROMPT INJECTION 
 

Name Category/Asset Main Risk Trigger

Indirect prompt injection Model Integrity, Compliance, Legal Keeping model in a loop with 
3rd party APIs or systems 
chained with model response 

Summary 
Indirect prompt injection is a critical security issue affecting LLMs. LLMs, widely used across various applications, combine 
user instructions with third-party content to create prompts for LLM processing. However, malicious actors can exploit 
this combination to inject harmful instructions into external content, causing LLMs to generate unexpected and potentially 
harmful responses. Despite the severity of this vulnerability, no comprehensive analysis or effective defense mechanisms have 
been proposed until recently.

Impact 
Indirect prompt injection attacks pose a significant risk to users and organizations. By manipulating LLM outputs, attackers 
can deceive users, alter information, or even cause unintended consequences. For instance, imagine a chatbot providing 
medical advice based on LLM-generated responses. If an attacker injects malicious instructions, the chatbot could recommend 
harmful treatments, endangering lives. The impact extends beyond chatbots to any LLM-integrated application, including 
translation services, content generation tools, and recommendation systems.

Example attack

•	 Financial Fraud: Malicious instructions are embedded in a stock market prediction blog post. Investors rely on LLM-
generated predictions for trading decisions. The LLM, influenced by the injected instructions, provides false predictions, 
leading to financial losses.

•	 Disinformation Campaigns: Attackers manipulate news articles by injecting biased instructions into LLMs so that, when 
prompted with these articles, they produce misleading summaries. Dissemination of false information affects public 

opinion and trust.
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Mitigations

•	 Implement standard techniques used for detecting prompt injection.

•	 Training LLMs on diverse and adversarial prompts to make them more robust against manipulation attempts.

•	 Sources Validation and Filtering: Use trusted sources of external content for LLM agents.

•	 Explainable AI Techniques: Utilizing explainable AI methods to understand how prompts contribute to the generated 
output, enabling better detection of potential manipulation attempts.

•	 Human-in-the-Loop Systems: Combining LLMs with human oversight and review processes can help catch malicious 
outputs and ensure responsible use of these models.

ADVERSARIAL SAMPLES 
 

Name Category/Asset Main Risk Trigger

Adversarial samples Model Integrity, Compliance, Legal Model response used 
for business decisions or 
presented to wider audience

Summary 
An adversarial sample is a carefully modified input designed to mislead an AI model. The modifications, often imperceptible to 
humans, can be as subtle as adding minimal noise to an image or crafting a sentence with slightly altered syntax. Despite the 
seemingly minor changes, the model misinterprets the input, often classifying it as a completely different category with high 
confidence. This raises significant concerns, especially in safety-critical domains like autonomous vehicles, facial recognition, 
and spam filtering, where incorrect predictions can have severe consequences.

These attacks can target various types of AI models, including deep neural networks, support vector machines, and decision 
trees. Adversarial samples often leverage the sensitivity of AI models to small changes in input data, aiming to exploit the 
model’s weaknesses and cause it to make incorrect predictions.

Generating adversarial samples often involves leveraging the model’s internal decision boundaries. These boundaries 
represent the learned decision surfaces that separate different classes in the input space. By understanding how the model 
makes predictions, attackers can craft inputs that lie close to, but just outside, the expected decision boundary for a 
particular class.

Impact and examples 
Misclassification leading to various scenarios depending on the model and application

•	 Safety & Security: In self-driving cars, a misclassified stop sign could lead to accidents. In facial recognition systems, 
manipulated images could enable unauthorized access.

•	 Finance: Fraudulent transactions might bypass detection systems. Stock prices could be manipulated through fake news 
fed to sentiment analysis models.

•	 Healthcare: Medical diagnosis or treatment recommendations could be compromised.
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Mitigations 
Addressing adversarial samples attacks requires a multifaceted approach. Some key mitigation strategies include:

•	 Robust Model Training: Incorporating adversarial training during model development by augmenting the training dataset 
with adversarial samples helps improve model robustness.

•	 Defensive Distillation: Applying defensive distillation, a technique involving training a secondary model on the outputs of 
the primary model, can enhance resistance to adversarial attacks.

•	 Input Preprocessing: Employing input preprocessing techniques, such as feature scaling and normalization, can make 
models less susceptible to adversarial samples.

•	 Adversarial Detection Mechanisms: Integrating detection mechanisms into AI systems can identify adversarial samples 
during runtime, enabling proactive responses to potential attacks.

SPONGE SAMPLES 
 

Name Category/Asset Main Risk Trigger

Sponge samples Model Availability, Compliance, 
Legal

Allowed input for inference

Summary 
The “sponge samples” attack exploits vulnerabilities in machine learning models, particularly neural networks, by leveraging 
maliciously crafted inputs designed to significantly increase energy consumption and computational latency. These “sponge” 
examples, named for their ability to absorb resources, work by triggering inefficient internal computations within the model, 
leading to performance degradation. The attack poses a threat to diverse applications that rely on real-time or resource-
constrained machine learning, such as autonomous vehicles, edge computing, and other resource-limited devices.

Impact

•	 Performance Degradation: The primary impact is a sharp rise in energy consumption and latency, potentially rendering the 
model inoperable or unresponsive in critical real-time scenarios.

•	 Denial-of-Service (DoS) Attacks: By targeting specific models or systems, attackers can launch DoS attacks, disrupting or 
disabling services that rely on machine learning.

•	 Security Implications: Sponge attacks could be combined with other adversarial techniques to evade detection, 

manipulate outputs, or achieve more complex goals.

Example attack 
Consider a language model used in a real-time chatbot application. An attacker crafts a sponge input tailored to the model’s 
architecture and training data. When fed to the model, this input triggers excessive internal computations, potentially causing:

•	 Increased resource consumption: The CPU/GPU demands spike, exceeding hardware/software limits, generated output is 
well above expected length/size.

•	 Elevated latency: The response time increases dramatically, rendering the chatbot sluggish or unresponsive to other users.

•	 Degraded accuracy: If the model’s resources are depleted, its ability to process legitimate inputs accurately may be 

compromised.



WHITE PAPER 12

Mitigations

•	 Input Validation and Normalization: Implement pre-processing steps to detect and reject suspicious inputs based on 
statistical or domain-specific criteria.

•	 Resource Monitoring and Throttling: Monitor resource usage (e.g., CPU, memory, latency) and dynamically adjust 
processing parameters to prevent overload and multi-tenant “noisy neighbor” issues.

•	 Adversarial Training: Train models with diverse adversarial examples to improve their robustness to manipulation and 
increase their attack detection capabilities.

•	 Hardware-Level Optimizations: Explore specialized hardware that can efficiently handle computationally expensive 
operations or detect and bypass anomalous patterns.

MODEL STEALING 
 

Name Category/Asset Main Risk Trigger

Model stealing Model Confidentiality, Legal Allowed input for inference 
and visibility to model 
response or model weights 
and code

Summary 
Model stealing is an attack aimed at extracting and replicating the functionality of a target model. In this breach, adversaries 
seek to gain unauthorized access to a pre-trained model, allowing them to recreate a replica that mirrors its behavior. This 
poses a significant threat to the intellectual property and proprietary algorithms of organizations that invest in developing 
advanced machine learning models.

Impact

•	 Intellectual Property Theft: Stealing a unique model may constitute intellectual property theft, depriving the owner of its 
potential benefits.

•	 Economic Loss: Stolen models can be used to compete directly with the owner, leading to lost revenue and market share.

•	 Reputational Damage: Breaches involving sensitive data or model theft can harm an organization’s reputation and erode 
customer trust.

•	 Security Risks: Stolen models might be used for malicious purposes, such as generating deepfakes or manipulating 

financial markets.

Example attack 
Consider a scenario where a financial institution has developed a highly accurate model to predict stock market trends. An 
adversary with malicious intent could deploy model stealing techniques to extract the underlying architecture, weights, 
and parameters of the model. With this information, the attacker can then recreate a duplicate model, giving them access 
to the same predictive capabilities without the need for extensive training data. This stolen model could be used for making 
profitable trades, putting the financial institution at a significant disadvantage.

Mitigations

•	 Secure Model Deployment: Employ secure deployment practices to safeguard the model architecture and parameters. 
Use encryption and secure channels to transmit model-related data.

•	 Watermarking and Fingerprinting: Embed watermarks or unique fingerprints into the model to identify its origin. This 
helps in tracing the stolen model back to its source.
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•	 Differential Privacy Techniques: Integrate differential privacy techniques into the training process to introduce noise, 
making it harder for attackers to accurately reconstruct the model.

•	 Access Control Measures: Implement strict access controls and permissions to limit who can interact with the model and 
its components. Regularly audit and monitor access logs for suspicious activities.

FUZZING 
 

Name Category/Asset Main Risk Trigger

Fuzzing Model Integrity, Availability, 
Compliance

Allowed input for inference 
and visibility to model 
response

Summary 
Machine learning model attack fuzzing (MLAF) leverages fuzz testing principles to discover vulnerabilities in machine learning 
models. It works by feeding the model with a deluge of diverse, often malformed, inputs, aiming to elicit unexpected behaviors 
or trigger crashes. This technique complements traditional adversarial example crafting methods, expanding the threat 
landscape beyond targeted perturbations.

In general computer science fuzzing, also known as fuzz testing or fuzzing analysis, is a powerful technique used to uncover 
vulnerabilities in software systems. In machine learning context it involves feeding in the context of model input that aims to 

discover vulnerabilities in ML models, algorithms, and their implementations.

Impact 
The impact of successful fuzzing attacks on ML systems can be severe:

•	 Incorrect Predictions: The attacker manipulates the model’s input to produce inaccurate predictions, potentially impacting 
safety-critical systems (e.g., self-driving cars).

•	 Privacy Violations: Fuzzing can reveal sensitive information encoded in the model, leading to privacy breaches.

•	 Adversarial Attacks: Fuzzing can reveal attack vectors that adversaries can exploit to manipulate ML models - an effective 
way to identify the right adversarial sample.

•	 Resource Exhaustion: Fuzzing can overload ML systems, causing resource exhaustion and denial-of-service 

(DoS) scenarios.

Example attack 
Consider an image classification model used in facial recognition. A fuzzing attack might identify tiny pixel-level perturbations 
that need to be inserted into an image to:

•	 Evade Detection: The model misclassifies the image as a different person, allowing unauthorized access.

•	 Privacy Breach: The perturbations reveal hidden information about the person in the image.

Mitigations

•	 Input Validation: Implement robust input validation mechanisms to reject malformed data before it reaches the model.

•	 Adversarial Training: Train the model on adversarial examples to improve its robustness against such attacks.

•	 Model Explainability: Utilize techniques like Explainable AI (XAI) to understand the model’s decision-making and identify 
potential vulnerabilities.

•	 Fuzzing as a Defense: Use fuzzing as a defensive tool to identify and fix vulnerabilities in models before attackers 

exploit them.
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MODEL INVERSION 
 

Name Category/Asset Main Risk Trigger

Model inversion Model Confidentiality, Legal Allowed input for inference 
and visibility to model 
response

Summary 
Model inversion is a class of privacy threats in AI where an adversary aims to reverse-engineer a trained model to extract 
sensitive information about its training data. This type of attack exploits the vulnerabilities present in the model’s output 
and can have serious implications for privacy and security. In a model inversion attack, an adversary leverages the model’s 
predictions to infer details about individual data points, potentially compromising confidential information.

Impact

•	 Intellectual property theft: Reversing engineering models might reveal proprietary information or trade secrets 
embedded in their training data.

•	 Privacy Breach: Attackers can uncover personal or confidential information from the model’s outputs.

•	 Adversarial Exploitation: Model inversion can aid adversaries in crafting targeted attacks or manipulating the original 

AI system.

Example attack 
Consider a model designed for a mortgage loan scoring system. An attacker, through repeated interactions with the system, 
submits carefully crafted queries and observes the model’s responses. By analyzing the output probabilities or decision 
boundaries, the adversary can gradually reconstruct certain features of individuals in the training dataset, ultimately revealing 
the identities of those individuals.

Mitigations

•	 Limit access to the model and its predictions.

•	 Require authentication, encryption, or other security measures.

•	 Validate input data to prevent malicious inputs.

•	 Check format, range, and consistency before processing.

•	 Log all inputs and outputs for auditing.

•	 Compare predictions to ground truth data.

•	 Monitor performance over time.

•	 Regularly update the model with new data.

•	 Correct inaccuracies and prevent outdated information leaks.
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DISTRIBUTED DENIAL OF SERVICE ON ML MODEL 
 

Name Category/Asset Main Risk Trigger

Distributed denial of service 
on ML model

Model Availability, Compliance, 
Legal

Unrestricted or unaccounted 
access to inference 

Summary 
Distributed Denial of Service (DDoS) attacks work in a similar way that sponge samples, aiming to overwhelm ML systems, 
exhaust their computational resources, and render them unusable. Traditional DDoS attacks target web servers or networks. 
In the ML context, the target becomes the model itself or the infrastructure it runs on. DDoS attacks against ML systems can 
take various forms:

•	 Resource Exhaustion: Attackers overload the system with requests, consuming critical resources like CPU, memory, or 
network bandwidth. This can cripple the model’s ability to process legitimate queries.

•	 Complex Inference Requests: Attackers deliberately craft computationally expensive inference requests, forcing the 
model to expend significant resources and time on each query, eventually slowing it to a crawl.

•	 False Data Injection: Attackers flood the system with erroneous or misleading data during training or retraining phases. 
This can corrupt the model and lead to degraded performance or biased predictions.

•	 Multi-Vector Attacks: Attackers may combine these methods to overwhelm the system’s defenses from multiple angles, 

amplifying their disruption potential.

Impact

•	 Disrupted Operations: Downtime for ML-powered systems in healthcare, finance, or autonomous systems can lead to 
delayed diagnoses, financial losses, or even safety hazards.

•	 Loss of Revenue: If a business relies on ML models to generate revenue (e.g., product recommendations), DDoS attacks 
translate into direct losses.

•	 Reputational Damage: Unreliable ML systems can erode user trust, hindering model adoption and impacting a 
company’s reputation.

•	 Increased Costs: Mitigating and recovering from DDoS attacks often involves additional infrastructure investment and 

operational expenses.

Example attack

•	 Targeting ML-based Spam Filters: Attackers can overwhelm email spam filters with complex, resource-intensive queries, 
allowing malicious emails to slip through and potentially causing further breaches.

•	 Manipulating AI-powered Trading Systems: DDoS attacks on stock trading algorithms can disrupt market operations, 
triggering delayed or erroneous trades leading to financial losses.

•	 Sabotaging Medical AI: Attackers may target ML-based medical diagnostic systems, delaying critical treatment decisions 

and potentially impacting patient care.
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Mitigations

•	 Capacity Planning and Scaling: Ensuring sufficient computational resources and implementing auto-scaling mechanisms to 
absorb initial surges of requests.

•	 Resilient Infrastructure: Distributing ML workloads across cloud-based or hybrid infrastructures can prevent single points 
of failure and improve resilience against attacks.

•	 Filtering and Traffic Anomaly Detection: Employing intrusion detection systems (IDS) and traffic analysis tools that can 
identify and filter out suspicious or malicious requests.

•	 Rate Limiting and Prioritization: Implementing rate-limiting controls and prioritizing legitimate traffic in real-time to 
maintain critical operations under attack.

•	 Adaptive Defense: Utilizing ML-based anomaly detection and real-time threat assessment to adapt defenses dynamically 
in response to evolving attack patterns.

MODEL POISONING 
 

Name Category/Asset Main Risk Trigger

Model poisoning Model Integrity, Availability, Legal Ability to tamper datasets or 
model codebase

Summary 
Poisoning attacks infiltrate malicious data into a model’s training process, manipulating its learning and causing significant 
performance degradation or biased outputs. Attackers can target: data integrity: injecting noise, outliers, or manipulated 
samples to confuse the model or label integrity: corrupting or flipping labels to alter the ground truth the model learns from.

Impact

•	 Degraded accuracy: The model’s ability to make correct predictions suffers, leading to unreliable results. In critical 
applications such as autonomous vehicles, healthcare diagnostics, or financial fraud detection, the consequences can be 
life-threatening or result in substantial financial losses.

•	 Biased outputs: The model learns skewed patterns that favor the attacker’s objectives, potentially leading to 
discrimination or unfairness.

•	 Reputational damage: Compromised models can erode trust in AI systems and their applications. This can undermine 

confidence in AI systems, hindering the widespread adoption of these technologies.

Example attack 
Consider a spam email filtering system that relies on an AI model to identify and filter out spam emails. In a model poisoning 
attack, the attacker strategically injects malicious examples into the training data, making the model more likely to misclassify 
legitimate emails as spam or vice versa. This can lead to a degraded filtering performance, allowing more malicious emails to 

reach users’ inboxes, thereby compromising the system’s effectiveness and potentially causing harm.

Mitigations

•	 Consider the supply chain of the model training infrastructure and process - integrity, invariants and access control should 
be assessed for each component and data flow.

•	 Regularly monitor the quality and integrity of training data to detect any anomalies or malicious injections. Implementing 
robust data validation checks can help identify unusual patterns indicative of model poisoning.

•	 Plant innocuous-looking but distinct data points to detect potential data injections.
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•	 Train machine learning models with adversarial examples to improve their robustness against malicious attacks. 
Adversarial training involves exposing the model to crafted malicious inputs during training, enabling it to learn and adapt 
to potential poisoning attempts.

•	 Incorporate explainability features into machine learning models to understand their decision-making processes. This can 
help identify unexpected biases or deviations from expected behavior, signaling a potential poisoning attack.

•	 Implement dynamic model updating mechanisms that allow models to be retrained with fresh and verified data regularly. 

This reduces the impact of any poisoning attempt by continuously adapting the model to the evolving data landscape.

TRAINING DATA POISONING 
 

Name Category/Asset Main Risk Trigger

Training data poisoning Dataset Integrity, Compliance, Legal Training models with 
datasets that are untrusted 
or could have been tampered 
with

Summary 
Training data poisoning in AI refers to the malicious manipulation of training data to compromise the integrity and 
performance of AI models. By injecting malicious examples or subtly altering existing data, attackers aim to induce specific 
behaviors in the model, to induce biases, skew model predictions, or cause targeted misclassifications. Poisoned data can 
be introduced via an AI supply chain compromise or the data may be poisoned after the adversary gains initial access to the 
system. Training data poisoning poses significant challenges to the security and reliability of AI systems, highlighting the 

importance of robust data validation and anomaly detection mechanisms to mitigate these threats.

Impact

•	 Model Performance Degradation: Poisoned data can significantly reduce model accuracy, reliability, and generalizability, 
leading to erroneous predictions and decisions.

•	 Biased Outcomes: Attackers can exploit data imbalances or inject discriminatory information to introduce unwanted 
biases into the model, perpetuating unfairness and discrimination.

•	 Security Vulnerabilities: Poisoning can be used to create backdoors or bypass security measures, enabling attackers to 
gain unauthorized access or manipulate system behavior.

•	 Reputational Damage: Models compromised by poisoning can lead to public mistrust, negative publicity, and financial 

losses for organizations.

Example attack 
Training model that generates new blog posts with gathered interactions from users. They make  coordinated efforts to 
poison data by sending inappropriate manipulated content which is registered as part of a training dataset. As a result 
the model begins to replicate these behaviors creating inappropriate posts in undermining the system’s effectiveness and 

trustworthiness.

Mitigations

•	 Data Sanitization: Implement rigorous data preprocessing and cleaning procedures to detect and remove anomalous or 
suspicious instances from the training dataset before model training begins.

•	 Robust Model Training: Employ adversarial training techniques, such as incorporating adversarial examples into the 
training process or using robust optimization algorithms, to enhance the resilience of machine learning models against data 
poisoning attacks.

•	 Input Validation: Validate input data at runtime to detect and mitigate potential attacks during model inference, ensuring 
that models can accurately classify legitimate inputs while robustly handling adversarial inputs.
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•	 Diverse Ensemble Learning: Train multiple diverse models using disjoint subsets of the training data and aggregate their 
predictions to improve robustness against data poisoning attacks. Ensemble methods can help mitigate the impact of 
poisoned data on individual models and enhance overall system resilience.

•	 Continuous Monitoring and Retraining: Continuously monitor model performance and behavior in production 
environments and retrain models periodically using updated and validated datasets to adapt to evolving threats and 
mitigate the impact of data poisoning over time.

MULTITENANCY IN ML ENVIRONMENTS 
 

Name Category/Asset Main Risk Trigger

Distributed denial of service 
on ML model

Infrastructure Confidentiality, Compliance, 
Legal

Access to ML services 
running in multi tenant 
environment

Summary 
Providing MLaaS - Accessible AI solutions have propelled the need for multi-tenant AI environments. These environments 
allow multiple clients (tenants) to share the same underlying infrastructure and resources while maintaining isolation and 
security. However, achieving effective tenant isolation presents the significant challenge of ensuring that tenants cannot 
access or influence the data and models of others. 

We consider three common approaches for handling AI models in multi-tenant environments:

1.	 Tenant-Specific Models: Each tenant trains and utilizes a dedicated model specifically on their data. This approach is ideal 
for highly sensitive data or situations where limited transfer learning potential exists between datasets.

2.	 Shared Models: All tenants utilize the same pre-trained model, potentially sourced from third parties or trained on 
aggregated, anonymized data from consenting tenants. This approach can be cost-effective but raises concerns about 
fairness and potential data leakage.

3.	 Tuned Shared Models: A shared model is initially trained on aggregated data and then further fine-tuned on each tenant’s 
specific data. This approach offers a balance between efficiency and security but requires careful design and management 

of the fine-tuning process.

Impact

•	 Impact on Data Privacy and Security: Sharing infrastructure raises concerns about data privacy and security. Tenants 
might inadvertently or maliciously access sensitive information belonging to other tenants, potentially compromising 
confidentiality and violating trust.

•	 Model Fairness: Shared models trained on data from diverse tenants can inherit biases present in individual datasets.  
This can lead to unfair or discriminatory outputs when applied across all tenants, undermining the model’s fairness 
and reliability.

•	 Performance and Resource Allocation: Sharing resources across multiple tenants can impact model performance and 
system responsiveness. Inefficient resource allocation can lead to resource exhaustion for specific tenants, impacting their 
model performance and overall user experience.

•	 Intellectual Property: Models created or fine tuned by company research teams may be used by clients but are a unique 
intellectual property which requires protection. Although they contain client data there should not be direct access to 

them or the possibility to extract them outside the hosting environment to protect IP.
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Example attack

•	 Data Exfiltration: Attackers might exploit weaknesses in isolation mechanisms to access or steal data from other tenants, 
potentially enabling identity theft, fraud, or competitive advantage.

•	 Model Poisoning: Malicious actors could inject poisoned data into shared datasets, manipulating the training process and 
influencing the behavior of the model for specific tenants, leading to biased or erroneous outputs.

•	 Model Inference Attacks: Attackers might analyze the model’s behavior for one tenant to infer information about the data 

or models of other tenants, potentially breaching privacy or revealing sensitive information.

Mitigations

•	 Data Encryption: Encrypting data at rest and in transit can prevent unauthorized access, even if an attacker gains access to 
the underlying infrastructure.

•	 Federated Learning: This approach allows training models on distributed datasets without directly sharing the data, 
enhancing privacy and security.

•	 Differential Privacy: Introducing statistical noise into the training process can mask individual contributions, protecting 
sensitive information and mitigating privacy concerns.

•	 Secure Multi-Party Computation (SMPC): This cryptographic technique allows multiple parties to jointly compute a 
function on their data without revealing the data itself, enabling secure collaboration and model training.

•	 Resource Management and Monitoring: Implementing robust resource management policies and monitoring systems can 
ensure fair allocation of resources and prevent performance degradation for individual tenants.

EXPOSURE OF SENSITIVE INFERENTIAL INPUTS 
 

Name Category/Asset Main Risk Trigger

Exposure of sensitive 
inferential inputs

Infrastructure Confidentiality, Integrity, 
Legal

Communication with model 
via an API

Summary 
Model inference is often offered as a wrapped up application service which, if not properly secured, might be a target to 
eavesdropping. This is not exactly an attack on the model rather on information in transit where sensitive information is 
inadvertently leaked or exposed during the inference process, posing risks to entities sending the information. Therefore, 
implementing robust security measures is essential to protect sensitive information from unauthorized access and ensure the 
confidentiality of the data.

Impact

•	 Privacy Violations: Leaked information can be used for identity theft, discrimination, or targeted attacks, jeopardizing 
individual privacy and autonomy.

•	 Reputational Damage: Breaches of trust due to leaked information can damage the reputation of institutions using AI 
systems and erode public trust in AI technology.

•	 Legal and Regulatory Violations: Depending on the nature of the exposed information and applicable regulations, 

organizations deploying vulnerable service could face legal repercussions.
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Example attack

•	 Inference Side-Channel Attacks: Adversaries can exploit side-channel information leakage during the inference process 
to infer sensitive attributes or inputs. For example, in a speech recognition system, an attacker may analyze the timing 
or duration of model responses to infer the presence of certain keywords or phrases, compromising user privacy and 
confidentiality.

•	 Direct access to sent data: Attacker can directly access to data sent for inference that contain sensitive information as a 

result of lack of proper security in transit of use of deprecated protocols like SSL.

Mitigations

•	 Proper configuration of encryption in transit: This includes enforcing the latest cryptographic standards, such as 
TLS 1.3 Additionally, strong cipher suites should be prioritized to bolster encryption strength while minimizing the risk of 
cryptographic attacks.

•	 Implementing authentication mechanisms: OAuth 2.0 or JSON Web Tokens (JWT), ensures that only authorized users can 
access sensitive resources, thereby mitigating the risk of unauthorized data access.

•	 Secure communication channels: For example,WebSocket over TLS, enables real-time bidirectional communication 
between clients and servers while maintaining the confidentiality and integrity of transmitted data.

ATTACKS ON THE INFRASTRUCTURE HOSTING AI SERVICES 
 

Name Category/Asset Main Risk Trigger

Distributed denial of service 
on AI model

Infrastructure Confidentiality, Integrity, 
Availability, Compliance, 
Legal

1P infrastructure hosting ML 
services

Summary 
While the focus often lies on the algorithms and models themselves, the security of the underlying AI hosting infrastructure 
is equally critical. This infrastructure typically comprises various non-AI components like Apache Kafka, Hadoop, and Flink, 
forming the backbone for data storage, processing, and model deployment. However, these components are susceptible 
to a range of technical attack vectors, potentially jeopardizing the entire ML system and exposing sensitive information. 
Understanding these vulnerabilities, their potential impact, and effective mitigation strategies is crucial for building secure 

and reliable AI deployments.

Impact 
Attackers can exploit vulnerabilities in various non-AI components of the AI hosting infrastructure:

•	 Remote Code Execution (RCE) on Servers

•	 SQL Injection

•	 Cloud Account Compromise

•	 CI/CD Pipeline Attacks

•	 Data Pipeline Attacks

This can have can have far-reaching consequences leading to:

•	 Data Breaches: Exposed sensitive data like training datasets, user input, or model outputs can lead to privacy violations, 
identity theft, or financial losses.

•	 Model Tampering: Manipulated models can generate erroneous predictions, leading to incorrect decisions, biased 
outcomes, or even safety hazards in critical applications.
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•	 Disrupted Operations: Attacks can disrupt data processing, model training, or inference pipelines, impacting service 
availability and hindering successful AI deployments.

•	 Reputational Damage: Security breaches can damage the reputation of organizations relying on AI, eroding user trust and 

potentially hindering broader adoption of the technology.

Example attack

•	 Analytic or  MLops platform compromise: A cyber attack on a healthcare organization exploited vulnerabilities in an 
cluster used for data analysis, resulting in the exfiltration of patient information.

•	 SQL Injection in Training Data Pipeline: A cloud-based AI platform suffered a data breach due to a SQL injection 
vulnerability in their data ingestion pipeline, leading to the exposure of sensitive training data.

•	 Supply Chain Attack on CI/CD Pipeline: Attackers gained access to a third-party CI/CD platform and injected malicious 

code into multiple ML models deployed by various organizations, impacting their predictions and causing financial losses.

Mitigations

•	 Patch Management and Vulnerability Scanning: Regularly applying security patches and conducting vulnerability scans on 
servers, databases, and other components can identify and address potential weaknesses before attackers exploit them.

•	 Least Privilege and Access Control: Implementing strict access control measures, including role-based access control 
(RBAC), can limit user privileges and prevent unauthorized access to sensitive data or systems.

•	 Data Encryption: Encrypting data at rest and in transit can protect it from unauthorized access even if attackers breach 
the infrastructure.

•	 Security Testing and Penetration Testing: Regularly conducting security testing and penetration testing can identify and 
address vulnerabilities in the infrastructure before attackers discover them.

•	 Continuous Monitoring and Logging: Implementing continuous monitoring and logging of system activity can help detect 
suspicious behavior and identify potential security incidents promptly.

•	 Security Awareness Training: Raising awareness among personnel involved in managing the AI infrastructure about 
cybersecurity best practices can help prevent human errors that could lead to security breaches.

SELF-HOSTED OSS LLMS SECURITY 
 

Name Category/Asset Main Risk Trigger

Distributed denial of service 
on ML model

General Confidentiality, Integrity, 
Availability, Compliance, 
Legal

Hosting 3rd party LLMs 
processing sensitive or 
internal use data

Summary 
The computational complexity of the training process has created a market in pretrained models which provides efficient 
training and enables rapid prototyping. However, hosting and utilizing third-party, pretrained models poses security 
challenges. The very essence of these models incorporating code opens avenues for malicious actors to exploit vulnerabilities 
and inject malicious functionality. Understanding the nature of these threats, their potential impact, and mitigation strategies 
is crucial for ensuring the safe and secure adoption of third-party models.
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Impact

•	 Traditional Malware: Malicious actors can embed trojans, crypto-lockers, botnet code, or cryptominers within the model 
structure. These can execute upon installation, compromising the host system and potentially causing financial losses or 
disrupting operations.

•	 Data Exfiltration: Models can be designed to leak sensitive information embedded in the input data (e.g., personal details, 
medical records) or the generated outputs, breaching user privacy and potentially violating regulations like GDPR.

•	 Reflective Attacks: Malicious models might exploit reflection vulnerabilities in serving systems, allowing attackers to 
upload their own code through crafted inputs, leading to arbitrary code execution on the hosting platform.

•	 Deliberate Misclassification: Attackers can inject code that manipulates the model’s decision-making process, causing it to 
misclassify specific inputs or produce erroneous results, impacting decision-making and potentially causing harm.

•	 Trigger-Based Actions: Malicious code within the model can be programmed to perform specific actions upon 

encountering specific inputs, enabling targeted attacks or causing disruptions based on predefined conditions.

Example attack 
Attackers could embed malicious code within a pre-trained image classifier. When deployed on a vulnerable system, the 
code could exfiltrate sensitive information from the user’s device, highlighting the potential for data breaches through 
compromised models.

Mitigations

•	 Supply Chain Security: Implementing rigorous verification processes for third-party models, including assessing the 
developer’s reputation, reviewing code provenance, and employing secure download channels.

•	 Cryptographic Signing: Utilizing digital signatures on models to ensure authenticity and tamper detection. Any 
modifications during download or transfer will invalidate the signature, alerting users to potential tampering.

•	 Model Testing: Conducting thorough testing frameworks to detect potential biases, vulnerabilities, and malicious 
functionality within the model before deployment. This may involve static analysis, dynamic analysis, and adversarial 
testing techniques.

•	 Malware Scanning: While technically challenging due to the complexity of models, exploring techniques like model 
compression and obfuscation may enable scanning for traditional malware signatures in specific scenarios.

•	 Secure Deployment and Monitoring: Deploying models in secure environments with robust access controls and network 
segmentation to minimize potential damage in case of compromise. Additionally, continuous monitoring for anomalous 
behavior is crucial for timely detection and mitigation of threats.
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